Department of Mathematics Course Outcomes M.Sc. Mathematics

Course Name: Algebra		Course Code: P16MA11
	Upon Completion of the cour	rse students would be able to
CO1	Summarize the concept of Sylow's theorem, Cayley's theorem.	
CO2	Give a detailed knowledge about the Euclidean Rings.	
CO3	Acquire knowledge on Polynomial rings – Polynomials over the rational field.	
CO4	Understand Extension fields, Roots of Polynomials.	
CO5	Explain the concepts of roots of the polyne	omials and Galois theory.
Course	Name: Real Analysis	Course Code: P16MA12
	Upon Completion of the cour	rse students would be able to
CO1	Describe the topological properties on m	etric space.
CO2	Differentiate continuity and uniform continuity with examples and infer the compactness in	
	continuity and connectedness.	
CO3	Explain the concept of Riemann- Stielije's Integrability and its properties and discuss	
	Rectifiable curves.	
CO4	Explain the sequence of family of contin	uous and equicontinuous functions and their
	convergence limits and determine whether the sequence of functions which are pointwise	
	convergent and uniform convergent	
CO5	Summarize the concept of Functions of several variables, The Implicit Function	
	Theorem.	
Course	Name: Ordinary Differential Equations	Course Code: P16MA13
	Upon Completion of the cou	se students would be able to
CO1	Evaluate The general solution of the homogeneous equation, the method of variation of	
	parameters, Power Series solutions.	
CO2	Explain the concept of Regular Singular Points, Gauss's hypergeometric equation, Properties	
	of Legendre Polynomials and Bessel functions	
CO3	CO3 Find solutions Linear Systems of First Order Equations, The Existence and Uniqueness of Solutions of Initial Value Problem for First Order Ordinary Differential Equations.	

CO4	Summarize the concept of Oscillation Theory and Boundary value problems, Eigen	
	values, Eigen functions and the Vibrating String.	
CO5	Explain the concept of Nonlinear equations, the phase plane and its phenomena.	
Course	Name: Graph Theory	Course Code: P16MA14
	Upon Completion of the cour	rse students would be able to
CO1	A rigorous study of the basic concepts of Graph Theory.	
CO2	Recognize trees and connectivity	
CO3	Recall the concept of Hamiltonian and Eulerian graph.	
CO4	Illustrate the proper Coloring and chromatic polynomial.	
CO5	Understand the concept of Planar and Nonplanar Graphs, Euler Formula and its	
	Consequences	
Course	Name: Integral Equations, Calculus Of	Course Code: P16MA15
	Variations And Transforms	
	Upon Completion of the cour	rse students would be able to
CO1	Acquire the knowledge of Calculus of varia	ations natural boundary conditions and transition
	condition.	
CO2	Know about the Fourier transform, Fourie	r integral theorem, Parseval's identity.
CO3	Know about the Hankel Transform, Some	mportant results for Bessel
	Function, Parseval's Theorem.	
CO4	Study Linear Integral Equations, the inner	and scalar product of two functions.
CO5	Apply iterative methods Method of succes	sive approximations:
Course	Name: Complex Analysis	Course Code: P16MA21
	Upon Completion of the cour	se students would be able to
CO1	Define analytic function and carry out conformal mappings with complex numbers.	
CO2	Evaluate a contour integral using fundamental theorem in complex integration and	
	Cauchy's integral formula.	
CO3	Acquire the knowledge of Local Properties of Analytic Functions, The Open Mapping	
	Theorem	
CO4	Understand the concept of The General	Form of Cauchy's Theorem, Proof of Cauchy's
	Theorem.	

CO5	Define Harmonic Functions, Schwarz's Theorem, The Reflection Principle, Power series	
	Expansions, Weierstrass's Theorem.	
Course	Name: Linear Algebra	Course Code: P16MA22
	Upon Completion of the cour	rse students would be able to
CO1	Acquire knowledge about bases and dimension.	
CO2	Understand the linear transformation using matrices.	
CO3	Understand the polynomial ideals and the prime factorization of polynomials.	
CO4	Acquire knowledge about Permutations and the uniqueness of determinants.	
CO5	Differentiate the triangulization and diagonalization.	
Course	Name: Partial Differential Equations	Course Code: P16MA23
	Upon Completion of the cour	rse students would be able to
CO1	Evaluate the first order partial differential equation for finding solutions.	
CO2	Understand the Cauchy's method of characteristics, compatible systems of first order	
	equations, Charpits method.	
CO3	Acquire knowledge Partial differential equations of the second order.	
CO4	Learn about Characteristics of equations in three variables.	
CO5	Know about Elementary solutions of Lapla	ce's equations.
Course	Course Name: Fuzzy Sets and TheirCourse Code: P16MAE1C	
	Applications	
	Upon Completion of the cour	rse students would be able to
CO1	Acquire knowledge about	
CO2	Discuss the types of operations on fuzzy sets, t- norms and fuzzy arithmetic.	
CO3	Learn about Arithmetic operations on Fuzzy numbers.	
CO4	Identify fuzzy relations, binary fuzzy relations and fuzzy equivalence relations.	
CO5	Describe and discuss Multi-person Decision Making-Ranking methods, Fuzzy	
	Linear programming.	
Course	Name: Stochastic Processes	Course Code: P16MAE2A
	Upon Completion of the cour	rse students would be able to
CO1	Understand the classification of stochastic processes and the idea of Markov chains in	
	various field.	

CO2	Apply the concept of higher transition pr	obabilities with their class of states
CO3	Understand the various distributions involved in in Poisson process through practical	
	problems.	
CO4	Analyze the concept of renewal process	with its application.
CO5	Compute queuing model with its character	eristics
Course	Name: Classical Dynamics	Course Code: P16MA31
	Upon Completion of the cour	se students would be able to
CO1	Recall and relate the basic notions of the mechanical system.	
CO2	Compute Lagrange's equation.	
CO3	Understand the various Special Applications of Lagrange's Equations.	
CO4	Learn about Hamilton's principle, Hamilton's equations.	
CO5	Know about Hamilton's Principal Function, The Hamilton -	
	Jacobi equation.	
Course	Name: Measure and Integration	Course Code: P16MA32
	Upon Completion of the cour	se students would be able to
CO1	Understand basis of measure theory	
CO2	Study about Riemann and Lebesgue integrals.	
CO3	Acquire the knowledge of Abstract Measure spaces.	
CO4	Acquire the knowledge of convergence in measure. Understand the Halin decomposition	
	theorem & Jordan decomposition theoren	n.
CO5	Learn about measurability and Fubini's theorem.	
Course	Name: Topology	Course Code: P16MA33
	Upon Completion of the cour	se students would be able to
CO1	Obtain the knowledge of fundamental concepts and methods in General topology.	
CO2	Acquire knowledge about Product topology and Metric topology.	
CO3	Know about Connected spaces, connected subspaces of the Real line, Components and local	
	connectedness.	
CO4	Study about Compact spaces, compact subspaces of the Real line, Limit Point Compactness,	
	Local Compactness.	
CO5	Learn about Countability and Separation Axioms.	

Course I	Name: Discrete Mathematics	Course Code: P16MAE3B	
	Upon Completion of the course students would be able to		
CO1	Recall the concept of Set theory and its properties.		
CO2	Learn about Mathematical Logic.		
CO3	Acquire the knowledge of Lattices as Parti	ally Ordered Sets.	
CO4	Obtain the knowledge of Various Boolean identities.		
CO5	Acquire knowledge about Phrase structure grammars, rewriting rules, derivation sentential		
	forms, language generated by grammar, regular, context free and context sensitive grammar		
	and languages.		
Course I	Name: Advanced Operations	Course Code: P16MAE3B	
	Research		
	Upon Completion of the course students would be able to		
CO1	Understand the different methods of I.P.P method and mixed integer LPP.		
CO2	Acquire knowledge about Dynamic programming.		
CO3	Obtain the knowledge of Decision Theory and Games.		
CO4	Learn about Inventory Models.		
CO5	Study about Kuhn Tucker conditions and Quadratic programming.		
Course I	Course Name: Functional Analysis Course Code: P16MA41		
	Upon Completion of the cour	se students would be able to	
CO1	Understand the concept of Banach spaces & Hilbert spaces.		
CO2	Acquire knowledge about Hilbert spaces.		
CO3	Describe the structure of finite dimensional spectral theory.		
CO4	Study about Regular, singular elements and the spectrum.		
CO5	Learn about The Structure of Commutative Banach Algebras.		
Course I	Course Name: Differential Geometry Course Code: P16MA42		
Upon Completion of the course students would be able to			
CO1	Obtain the knowledge of Space Curves Fundamental Existence Theorem for space curves.		
CO2	Understand the concept of Intrinsic Properties of a Surface.		
CO3	Acquire knowledge about Canonical geodesic equations, Gauss- Bonnet Theorem, Gaussian		
	curvature.		

CO4	Describe the Non-Intrinsic Properties of a Surface, Developable associated with space curves		
	and with curves on surface.		
CO5	Learn about Compact surfaces whose points are umbilics- Hilbert's lemma.		
Course	ourse Name: Advanced Numerical Analysis Course Code: P16MA43		
	Upon Completion of the cour	se students would be able to	
CO1	Understand the fundamentals of solutions of Algebraic and transcendental equations.		
CO2	Understand how to use Jacobi iteration method, Gauss Seidel Iteration method, power method.		
CO3	Acquire knowledge to use Hermite interpolation and least square approximation.		
CO4	Be familiar with interpolation and extrapolation method.		
CO5	Gain the knowledge of Ordinary differential equations, Single step Methods.		
Course	rse Name: Algebraic Number Theory Course Code: P16MAE5C		
	Upon Completion of the cour	se students would be able to	
CO1	Acquire knowledge about divisibility and congruences.		
CO2	Understand the techniques of numerical calculations of prime moduli and power moduli		
	using congruences.		
CO3	Understand the ideas of quadratic residues and quadratic reciprocity.		
CO4	Acquire knowledge about binary quadratic forms and recurrence relation.		
CO5	Gain the knowledge of Diophantine Equations		
Course	Name: Project	Course Code: P16MAPW	
	Upon Completion of the cour	se students would be able to	
CO1	Helps to understand deep knowledge in particular area of research		
CO2	Helps the students to learn how to collect articles and how to write dissertation		
CO3	How to design research experiments		
004	How to analysis the data statistically		
CO4	How to analysis the data statistically		
CO4 CO5	How to analysis the data statisticallyHow to prepare reports for presentation	in conferences and seminars	